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Abstract 

This paper provides an updated review of Monte Carlo simulation. The use of 
random sampling, its consequences in simulation, the use of descriptive sampling, its 
advantages, its limits and its improvement upon the precision of simulation 
estimates: Refined descriptive sampling. This state of the art gives also an insight 
into other sampling procedures used in the literature, like Ranked set sampling, 
Systematic sampling, Stratified sampling, Latin hypercube sampling, L Ranked set 
sampling, Importance sampling and Quasi Monte Carlo methods. Finally, as a future 
work parallelism of the best sampling procedure is proposed to reduce the time of 
running simulation experiments. 

1. Introduction 

Monte Carlo method traces its modern origins and name to the work 
of Von Neuman and Ulam in the late 1940's. Later, simulation inherited 
the name of Monte Carlo (MC) method and the term of MC sampling has 
become synonymous with Random Sampling (RS). This statistical method 
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is the purest form of probability sampling. Each member of the 
population has an equal and known chance of being selected. The random 
sampling method is commonly used to simulate systems containing 
stochastic or probabilistic situations. It might also be considered to solve 
some deterministic problems that cannot be solved analytically. 
Currently, it is widely used in Monte Carlo simulation (Fishman [19] and 
Anderson [4]) and has a very large application field; like differential 
equation integration, matrix inversion, particles transport, fluid 
mechanics and financial mathematics (Ross [49], Doucet [15] and Robert 
[47]). 

This paper deals with the use of random sampling and its 
consequences in simulation; an update of various work on Descriptive 
Sampling (DS), its advantages and its problems as well as the Refined 
Descriptive Sampling (RDS) recently introduced as a better alternative to 
RS and DS. We will also expose in this paper, other sampling methods 
used in the literature like Ranked set sampling, Systematic sampling, 
Stratified sampling, Latin Hypercube Sampling (LHS), L Ranked set 
sampling, selective sampling, Importance sampling and Quasi Monte 
Carlo (QMC) methods. Finally, this paper gives an open research issues 
on the chosen best sampling method used in Monte Carlo Simulation: 
parallelism. 

2. Problem Formulation 

In a simulation study, a logical model is built and used as a vehicle 
for experimentation. The model is illustrated in Figure 1. The 
distributions of input variables are assumed to be known, while the 
response variables’ distributions are unknown. When the problem is 
simulated, input random variables are replaced by samples. As a result, 
response variables are also replaced by samples. Therefore, experiments 
are carried out on the model and unknown parameters of the response 
random variables of interest are estimated.  
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Figure 1. Simulation model representation: A set of input 
random variables is transformed into a set of output random 
variables. 

When RS procedure is used, the sample values are generated using 
some Random Number Generators (RNGs) and either the inverse 
cumulative function distribution or equivalent methods. RNG provides 
sequences of real numbers in the interval [ ).1,0  These numbers are 
viewed as realizations of identically independent distribution ( )1,0U  
random variables and transformed as needed to generate variates from 
some probability distributions, and then unknown parameters of the 
output random variables are estimated. Thus, every Monte Carlo 
simulation that requires s such uniforms may be regarded as computing 

a function f defined over the s dimensional unit hypercube [ ) ,1,0 s  at 
some point u determined by the RNG, to estimate a mathematical 
expectation that can be written as 

( )( )
[ )

( ) .
1,0

duufUfE s∫==µ  

3. Variance Reduction Techniques 

Indeed, random sampling can solve a large variety of problems but 
some variations are present in a randomly generated sample. Already in 
the late 1930s, several authors studied RS variability, for example, 
Kendall and Babington [25] argued that two sources of sampling errors: 
the set effect and the sequence effect are generated using RS method in 
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most simulation studies. Another source of error was detected by Saliby 
[51] and was given the name of the set-sequence interaction effect. This 
type of error cannot be explained by neither the set effect nor the 
sequence effect, but only by their interaction. In the same reference, 
empirical results on different simulation problems were given to support 
the existence of this source of error and the set effect was explained by 
the observed deviations results between the input sample moments and 
their corresponding theoretical values. 

Several authors, for example, Bratley et al. [8], Ross et al. [48], Tuffin 
[67] and Law [28] suggested two alternative methods to reduce the 
sampling errors. One is the use of Variance Reduction Techniques 
(VRTs), and the other is the use of replicated runs. The most used 
variance reduction techniques in the literature are control variates, 
antithetic variates and common random numbers. 

Control variates 

The method of control variates is defined by the variables used to 
control the sampling errors called control variables. For instance, if the 
mean is used to control the sampling errors then, the mean is a control 
variable. In this method, the idea is to exploit the correlation that might 
exist between the input variable and the respective output variable in 
order to obtain estimators values that are more accurate. 

In the study of the variability of simulation estimates, Ehrenfeld and 
Ben Tuvia [18], and Saliby [51] show that the linear response model 
explains a great deal of sampling variability. The idea of the linear 
response model came from the need to investigating the relationship 
between the simulation outputs and the sampled inputs. This technique 
is equivalent to the linear response model (Saliby [51]), in a way that the 
use of control variables will provide a more useful interpretation of the 
regression coefficient. Indeed, if the input parameters are identified as 
control variables, then the linear response model becomes a regression 
model. 
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Antithetic variates 

In order to reduce the variance of simulation estimates, Hammersley 
and Morton [23] introduced the method of antithetic variates This VRT 
deals with two negatively correlated estimates of an unknown parameter. 
In the case of both independent estimates, the variance of the overall 
mean will be smaller than the respective variances. Tocher [66] gave a 
way of obtaining negatively correlated results by using the 
complementary random streams, and then, the method of antithetic 
variates was associated with complementary random streams. Barnett 
[7] has shown that antithetic variates and control variates are both 
efficient on an example of the negative exponential law with unit mean 
and he obtained negatively correlated results with a correlation 

coefficient of 645.061
2

−=π−  using complementary random streams of 

the same exponential law. Shannon [56] agreed that antithetic variates is 
efficient compared with other techniques of variance reduction by 
considering the advantages of the method and the fact, that is, relatively 
easy to find negatively correlated unbiased estimators. Cheng [11] shows 
the ease of implementation, and the effectiveness of the method through 
numerical examples and proposes a procedure based on both antithetic 
variates and control variates for generating samples from a normal 
distribution. Davidson and Mac Kinnon [13] studied these two methods 
arguing that both work well in practice and greatly reduce the number of 
replications required to obtain a given level of accuracy. 

Common random numbers 

Common random variates also known as correlated sampling 
procedure is a technique of reducing variance applicable for comparing 
two or more alternatives that could be policies or systems configuration. 
The principle of the method is to use the difference between the responses 
of alternatives to estimate the difference between the respective expected 
values. The objective is to obtain a high and positive correlation between 
all responses. 
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Several authors including Shannon [56], Kleijnen [26] and L'Ecuyer 
and Buist [31] agreed that correlated sampling is more stable compared 
to other methods of variance reduction and have shown its power on some 
examples. Saliby [51], who confirmed empirically the existence of a high 
correlation between the responses when this method is used, gave a 
justification of common random variates. Moreover, he proved that the 
positive and high correlation observed between the responses is 
attributed to the various sources of sampling errors. He also argued that 
this method controls only partially the set effect, but it is the only 
technique, where part of the sequence effect can also be controlled. 

Replicated runs 

Suppose that a MC experiment involves n independent replicated 

runs. In a given run i, the use of random sequence [ ) =∈ iu s
i ,1,0  

n,,1 K  leads to the following MC unbiased estimator of µ  

( ),1

1
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which has a variance of ,2 nσ  where 
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( ) .Var 22
1,0
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The use of replicated runs was criticized by some authors for instance, 
Shannon [56] and L’Ecuyer [29] argued that the error of the average 
results is inversely proportional to the square root of runs number, that 
is, the error µ−nQ  converges at rate ( ).nO σ  

4. Probability Sampling Methods 

Sampling methods are classified as either probability or non-
probability. In probability samples, each member of the population has a 
known non-zero probability of being selected. Probability methods include 
RS, ranked set sampling, systematic sampling, stratified sampling, Latin 
hypercube sampling and L ranked set sampling. All these sampling 
methods can also be considered as VRTs. 



SAMPLING METHODS AND PARALLELISM … 175

Ranked set sampling 

Mc Intyre [34] proposes an unbiased selective sampling method using 
ranked sets called later Ranked Set Sampling (RSS) by Halls and Dell 
[22]. In this method, we take the largest in the first of n sets, each of n 
random items, the second largest in the second set, and so on to the 
smallest in the n-th set. The sample of n items selected in this way is an 
unbiased sample of the population. This sampling procedure induces 
stratification of the whole population at the sample level; indeed, it is a 
random sampling generation from the subpopulations of predominantly 
criteria without having to construct the subpopulation strata. Each 
subpopulation has its own distribution. Many types of this sampling 
procedure are used for estimating the population mean. Dell end Clutter 
[14] show that ranked set sampling produces unbiased simulation 
estimates and at least as precise as the RS but Muttlak [37] increases the 
efficiency of the estimators obtained by RSS just on a simple linear 
regression model, it follows that RSS still fails to improve on random 
sampling. 

Systematic sampling 

Systematic sampling is a probability method often used instead of 
random sampling. It is also called an thN  name selection technique. 
After the required sample size has been calculated, every thN  record is 
selected from a list of population members. A random starting point must 
also be selected. As long as the list does not contain any hidden order, 
this sampling method is as good as the random sampling method. Its only 
advantage over the RS technique is simplicity. Systematic sampling is 
frequently used to select a specified number of records from a computer 
file. When this sampling procedure is used the list can have a periodic 
arrangement and in this case, it can fare very badly. Unless the list itself 
is in random order, which it never is, systematic sampling is not better 
than random sampling. 

Stratified sampling 

Stratified sampling is commonly used probability method, that is, 
better than random sampling since it reduces sampling error. A stratum 
is a subset of the population that shares at least one common 
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characteristic. The researcher first identifies the relevant stratum and 
their actual representation in the population. A sample is then taken 
from each stratum using either RS or Systematic sampling, and when it 
is a random sample, it is referred to as stratified random sampling. The 
sample size must be large enough to be reasonably confident that the 
stratum represents the population. Stratified sampling is often used 
when one or more of the stratums in the population have a low incidence 
relative to the other stratum. Rubinstein [50] and Nelson and Schmeiser 
[38] discussed stratified sampling in the context of MC simulation. 

Latin hypercube sampling 

McKay et al. [35] proposed Latin hypercube sampling. The latter was 
suggested as a variance reduction technique in which the selection of 
sample values is highly controlled, although still letting them to vary. 
The basis of LHS is a full stratification of the sampled distribution with a 
random selection inside each stratum. It is a kind of stratified random 
sampling, where sample values are randomly shuffled among different 
variables. An input sample is generated by 

( ) ( ) 



 +−= −

jniji RiHxh 11  

 for jni ,,2,1 K=  and ,,,2,1 kj K=  

where iR  stands for an independent random uniform on [ ] ,1,1,0 =i  

jn,,2 K  and ( ) [ )1,0,1 ∈− RRH  is the inverse cumulative distribution 

of a particular input variable. 

This technique has been extensively used in practice, not only 
because of its implementation simplicity but also because of its nice 
properties. Indeed, Mc Kay et al. [35] show that the variance of the LHS 
estimates is not higher than the sample variance from Monte Carlo 
sampling, if the function f is monotone in all of its arguments. Hoshino 
and Takemura [24] extend this result to the case, where the function f is 
monotone in all but one of its arguments. Stein [59] writes the ANOVA 
description of the function f and show that asymptotically, the sample 
variance from LHS is just equal to the variance of the residual term and 
is lower than the variance of Monte Carlo sampling. Loh [33] extends this 
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results to the multivariate case, where .: ds RRf →  Owen [43] shows 
that LHS satisfies a central limit theorem with the variance equal to the 
variance of the residual term and in [44] the same author shows that for 
any n and any function f , 

.Var1Var MCLHS n
n
−

≤  

L Ranked set sampling 

A robust ranked set sampling (LRSS) is introduced by Al-Nasser [3] 
as a generalization for many types of ranked set sampling. The same 
author argued that LRSS method gives an unbiased estimator for the 
population mean with minimum variance providing that the underlying 
distribution is symmetric. However, comparisons between this sampling 
method, RSS and RS for detecting outliers on some distributions are 
given in the same reference and the results indicate that the estimator 
produced by using LRSS is the best. This sampling method still lacks 
adequate properties, its efficiency is proved in particular case (symmetric 
distribution) and so, it cannot replace random sampling. 

5. Non-probability Sampling Methods 

According to Saliby [51], it is not necessary to have a large amount of 
sampling errors in simulation, if later; we use some techniques to remove 
part of them. He argued that trying to reduce the variance without 
knowing a priory its cause is obviously an unsatisfactory approach. As 
sampling errors are generated by the use of random sampling procedure, 
he concluded that RS is inefficient and unwise. We also know that the 
simulation estimates are affected by such sampling errors. Therefore, the 
former vary between different runs, whereas the model remains 
unchanged. Consequently, their variability is subject to RS procedure 
and the random behaviour of an input stochastic variable is not well 
represented. Given the relationship between the lack of precision of 
simulation estimates and random sampling method, it was born a 
remedial new paradigm. The latter says that is not always necessary to 
generate sample values randomly to describe a stochastic behaviour of an 
input distribution. As the aim of any sampling procedure is to represent 
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truly the population distribution from which it is generated so, that any 
simulation estimates drawn from it can be safely implemented in the real 
system. Then, new non-random sampling methods were derived from this 
paradigm. In non-probability sampling, members are selected from the 
population in some non-random manner. Most of them are presented in 
this section. These include selective sampling, importance sampling, 
descriptive sampling, refined descriptive sampling and quasi Monte 
Carlo methods. All these non-random sampling methods can also be 
considered as variance reduction techniques. 

Selective sampling 

Brenner [3] proposed a more restrictive procedure than random 
sampling called selective sampling. This procedure consists of sampling 
without replacement. Kleijnen [26] argued that the use of this method 
will produce biased results, so, no real attention has been given to the 
method that has never been taken up. 

Importance sampling 

Importance sampling attempts to concentrate sampling in regions of 
interest, where “interest” may be related to the variance within the 
region, the likelihood of observations in the region, and/or the magnitude 
of observations in the region. This sampling method biases the outputs by 
altering the probability distributions of the inputs. Traditional fast 
simulation techniques are usually based on importance sampling. Since 
the simulation estimates are biased through this sampling procedure, it 
cannot be compared to random sampling. 

uasiQ  Monte Carlo methods 

In quasi Monte Carlo methods, we use deterministic sequences of 
weak convergence to reduce the variance in MC method. It is also a 
variance reduction technique. In other words, we replace the random 

points iu  by a set of points { } [ )snn uuup 1,0,,, 21 ⊂= K  that cover the 

unit hypercube [ )s1,0  more uniformly than typical random points. The 
two main classes of methods for constructing such point sets are digital 
nets and integration lattices (L’Ecuyer et al. [30], Niederreiter [39] and 
Sloan [58]). 
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Tuffin [68], Owen [44] and Okten [40] using, respectively, a random 
permutation of QMC methods, randomized nets and sequences and 
random sampling with low discrepancy sequences, carried out various 
comparisons between the simulation of MC and QMC producing hybrid 
methods. Keng Seng and Boyle [60], analyzes the Owen approach of 
randomized quasi random sequences, suggesting an improvement for 
high dimensional cases, exhibiting better performance than both MC and 
QMC methods. Okten [42] shows that an hybrid-Monte Carlo sequence 
satisfies a central limit theorem and improved its error bounds. The 
existing literature in this field abounds of theoretical results on QMC, for 
example, (Morokoff [36], Avramidis and L’Ecuyer [5]). 

Descriptive sampling 

Later, in an attempt to improve on random sampling procedure, 
Saliby [52] proposed an alternative approach, called, descriptive sampling. 
This method is based on a deterministic selection of the input sample 
values and their random permutation. The values of the descriptive 
sample do not vary but only their sequences vary between different 
simulation runs. Unlike the RS, the set of input values are the same for 
all replicated runs in the simulation. Once the sample size is known, the 
set values are defined for each input random variable ,Xj  kj ,,1 K=  
using the inverse method by 

( ) ( ) 



 −= −

jnji iHxd 5.01  

 for jni ,,2,1 K=  and ,,,2,1 kj K=  

where ( ) [ )1,0,1 ∈− RRH  is the inverse cumulative distribution of a 
particular input variable. 

This method has been criticized by Pidd [45], who argued that it can 
be biased, and its strict operation requires a prior knowledge of the 
sample size. Some other problems on its data processing implementation 
were also mentioned by some authors and solved later by Saliby [53], who 
implemented DS on different models in the three phase discrete event 
simulation. 
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Saliby [52] argued that if the sample size is known in advance, the 
use of DS eliminates completely the set effect. Therefore, the simulation 
estimates produced will be more precise than those obtained by RS 
method. In this case, DS offers the advantage of the precision of the 
simulation estimates and once this procedure is used, there is no need for 
further variance reduction techniques. Indeed, the assumption on the 
sample size makes the use of DS difficult, since its determination 
beforehand is not easy for real simulation problems but in this case, the 
same author proposed to use again the same sample values to overtake 
this possible problem. 

Although, no mathematical proof on the study of biased estimates 
was proposed by Saliby [52], all the same, he mentioned its 
insignificance. He added that, even if this bias exists, it will not overtake 
the coefficient of correlation between the descriptive variables and then, 
it will be of a small magnitude. 

Refined descriptive sampling 

In Tari [63], a study is available on the bias that DS produces based 
on some stylized input-output transformations that allow the 
determination of the types of problems, where DS encounters the most 
bias. Several authors argued that the possibility of producing biased 
estimators through simulation using DS comes from the fact that the 
descriptive variables are dependent and negatively correlated variables, 
which constitutes the main difference between descriptive and random 
sampling procedures, but this dependence does not increase the risk of 
biased estimates. Indeed, the problem of bias in DS is because a regular 
sampling grid is used to select the input values. If the input function is 
periodic, there is a risk that the set of output values will be biased. 
However, if the input function is not periodic, there is no risk of sampling 
bias. 

Based on this study, refined descriptive sampling is proposed by Tari 
and Dahmani [64] to improve on descriptive sampling by reducing 
significantly its bias. This sampling procedure is based on a block that 
must be situated inside a generator aiming to distribute regular numbers 
from subsets of prime number sizes as required by the simulation. We 
stop the process when the simulation terminates. The generation process 
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of the subset values is deterministic, whereas the generation of the prime 
numbers as well as the sequence of the subset values is random. In this 
method, each run is determined by a block of different prime numbers. 

Suppose that m prime numbers have been used in a simulation run. 
Sample values for any input random variable X are generated as 
required by the simulation using the inverse method by 

( ) 






 −= −

q
qi p

iHxd 5.01  for qpi ,,2,1 K=  and ,,,2,1 mq K=  

where ,qp  mq ,,2,1 K=  are prime numbers generated randomly and 

( ) RRH ,1−  [ )1,0∈  is the inverse cumulative distribution of the input 
variable X. 

This approach removes the need to determine in advance the sample 
size. Mathematical arguments together with a proof of its efficiency are 
presented in Tari and dahmani [64] by studying a problem, whose input 
variable is a sinusoidal function. 

6. Comparison 

Nelson and Schemeiser [38] proposed and illustrated variance 
reduction taxonomy by considering seven VRTs namely, antithetic 
variates, common random numbers, control variates, conditional 
expectations, importance sampling, stratified sampling and post 
stratified sampling. This taxonomy reduces the confusion existing among 
variance reduction techniques and provides a common language for 
communication among researchers and practitioners. 

Saliby [51] compared antithetic variates and common random 
numbers showing that the former is less efficient than the latter. In the 
same reference, he argued that the assumption of antithetic results does 
not hold, and that is an inefficient procedure for controlling the set effect. 

Kwon and Tew [27] for combining antithetic variates and control 
variates, proposed three combined methods. The efficiency of each 
combined method was proved on a simulation model of a resource 
constrained activity network. In the same reference, the author stated 
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that the choice of combined methods depends on the degree of correlation 
between the control variates and the response. 

L’Ecuyer and Buist [31] simulate a telephone call center model, 
where agents answer incoming calls and show that the variance is 
reduced by using a combined method of control variates and stratified 
sampling. They argued that proper use of common random numbers 
reduces the convergence rates of the variance of the performance 
measures across all configurations of the system. 

DS, RDS and LHS are all based on a random permutation of the 
input numbers but both DS and RDS select their values differently from 
LHS. 

In Saliby [54], there is a discussion suggesting that DS has a lower 
variance than LHS without referring to the produced bias. However, it is 
well known that both LHS and RS are unbiased (Mc Kay et al. [35] and 
Drew and Homen de Mello [16]). 

Several empirical comparisons on a PERT network, an M/M/1 queue 
and on an inventory system (Saliby [52]) show that the estimates of the 
output random variables parameters produced through simulation using 
DS are with lower variance than those obtained by RS method. That 
studied also the Newsboy problem and the obtained results are exactly 
the theoretical values. This is a particular case, where the estimators are 
independent of the sequence of the input values.  

Saliby and Pacheco [55] compare the efficiency of six Monte Carlo 
simulation sampling methods namely QMC using Halton, Sobol and 
Faure numeric sequences, DS, LHS and RS in two finance applications: a 
project risk analysis and a correlated stock portfolio. In this study, DS 
and LHS have shown the best results. Therefore, both DS and LHS 
outperformed QMC methods. 

Tari and Dahmani [64] have shown that RDS is an efficient sampling 
in simulation studies developing methods. This reference was concerned 
with ensuring that the application of the RDS method is safe, correctly 
designed and fitted to any simulation in an economical and undemanding 
manner. 
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Tari and Dahmani [61, 62] compare the efficiency of DS and RDS on 
a production system of the flow shop type by discrete event simulation 
method and a manufacturing production system showing that RDS 
produces better estimates of the output random variables parameters 
produced through simulation than DS and RS and are with lower 
variance. So, it has been shown that RDS is an improvement over DS, 
RS, LHS and QMC methods, and it is capable of substantially reducing 
the cost of running simulation experiments, if properly applied. As a 
conclusion, we deduce that RDS outperform all other sampling methods. 

7. Simulation Studies 

There are many diagrams and descriptions that outline the key 
processes in a simulation study as there are authors, who have written 
about the subject. Among them are Bank et al. [6] and Robinson [46]. The 
outline of a simulation study that must be performed are firstly, a 
description of the model, that is, to be developed, secondly, the simulation 
model implemented on a computer, then the results of the experiment 
and finally the improvement in the real world obtained from 
implementing the solutions. In fact, simulation modeling involves both 
repetition and iteration. A large simulation model may take a number of 
hours to run and of course, many runs may be required for thorough 
experimentation. Because simulation is time-consuming approach, it is 
recommended that it be used as a means of last resort, rather than the 
preferred option (Pidd [45]). That said, simulation is often the only resort. 
Indeed, simulation studies systems whose analytical solution is difficult 
even impossible. Surveys of modelling practice demonstrate that 
simulation is one of the most commonly used modeling techniques. 

The development of simulation software has been very closely allied 
to the development of computing. A wide range of software is now 
available for developing simulation models (Law and Kelton [28]). Most 
simulation software is not cheap and most simulation projects take few 
weeks to complete. Few software applications require the computing 
power necessary for simulation. Even Taylor et al. [65] explore the use of 
net conferencing during simulation studies. Beyond the simulation 
software, there is a range of other packages that may sometimes be useful 
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during a simulation study. Spreadsheets, databases, and statistical 
packages may be useful for working through more complex analyses. 

8. Parallelism 

It is obvious, from Section 7 that a simulation study is expensive in 
time and memory and more generally in necessary resources (Ahn and 
Danzig [1]). Indeed, the traditional simulation tools could be unusable 
when complex systems are studied. We are then confronted with the 
problem of the best compromise between the precision of simulation 
estimates and the cost of the experiment. The latter of course must be 
balanced against the benefits that can be gained from the use of 
simulation, by the same way, the precision of the estimates that are often 
an order of magnitude greater than the cost. Unfortunately, the limited 
means of available sequential computation make this achieving goal 
difficult. Then, parallelism proposes itself as an inevitable solution to the 
above problem. It can be regarded as a means of reducing the cost in time 
and memory of a program solving a complex problem. 

It is well known that the parallel processing of a program by more 
than one task is independent with each task being able to execute the 
same or different statement at the same moment. In parallelism, some 
mechanisms are more efficient on quite particular architectures. Indeed, 
the choice of adequate mechanisms with problem specificities is 
necessary. A programmed application using threads is more appropriate 
on shared memory than on distributed memory architectures. On the 
other hand, if we have a large amounts of data, it is more appropriate to 
distribute the data on different available processors. In this case, to 
ensure a better data distribution between different nodes, the most 
appropriate architecture is distributed memory architecture. 
Nevertheless, both architectures can be appropriate, if the same program 
is processed on small amounts of data. Parallelism is expressed by several 
models of programming like programming by exchange of messages and 
communication by shared variables. It depends on the considered type of 
machines, those with shared memory or distributed memory, as well as 
on the used architecture. We can find in the literature various 
classifications for parallel architectures. Some examples are classification 
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of Flynn (Flynn [20]); Taxonomy of Skililcorn (Skililcorn [57]) and the 
classification of Duncan (Duncan [17]). They are all based on particular 
and important points of the architecture but the classification of Flynn is 
the most popular. 

There is several work on the parallelization of Monte Carlo methods, 
but all kinds of variations are still present in a randomly generated 
sample and the simulation estimates remain affected by such sampling 
errors through Monte Carlo parallel algorithms already proposed, for 
example, by Alme et al. [2], Tuffin and Le Ny [68] and Okten and 
Srinivasan [41]. 

Given that RDS was selected as the best sampling method to improve 
upon the precision of the simulation estimates, its parallelization is then 
suggested to reduce the cost of running simulation experiments and in 
the same way, it keeps the assets of RDS mainly ensuring that the 
simulation results are efficient and can be implemented safely in the real 
world. 

9. The Proposed Parallel Simulation 

In this subsection, we propose a parallel Monte Carlo simulation 
using refined descriptive sampling method. The latter’s algorithm given 
in Tari [64] can be regarded as an algorithm of dependent instructions 
capable to be executed just in sequential way. The only instruction able 
to be parallelized is the loop of the array filling up with regular numbers 
that generates a high communication cost given by the following formula: 

timelatencycostoncommuncati =  

timeovercost+  

.dtransferre time+  

Such as: 

Latency time: Initialization time of the networks parameters. 

Overcost time: Make-ready time of the message. 

Transferred time: Necessary time to transfer the message. 
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To ovoid such communication cost that can be generated by the 
parallelization of RDS method, parallelism of the number of replicated 
runs is proposed for a future directions using RDS to generate input 
distributions. We have then carried out a parallel Monte Carlo 
simulation program running only on machines with distributed memory. 
It is straightforwardly a replication of the whole RDS program on various 
processors. Given the regular number generation of RDS, its 
parallelization is easy and simplified regarded to the load balancing. The 
latter is ensured since the same RDS program runs on all machines. 
Accordingly, the Single Program Multiple Data (SPMD) model has been 
selected for a better programming related to the replicated runs and the 
Message Passing Interface library (MPI Forum [69]) has been suitably 
chosen to be used with such model. The use of SPMD model will provide 
an optimal efficiency of the proposed RDS parallel algorithm. The chosen 
library supports well the language ++CC  and FORTRAN and allows 
the data exchange between the processors. The selected library fits well 
our requirements; nevertheless, we can find other libraries like Parallel 
Virtual Machine (PVM) (Gest et al. [21]), Portable Programs for Parallel 
Processors (Butler and Lusk [10]) and Open Multi Processing (Chergui 
and Lavallée [12]). 

Let us suppose 1+Q  processors taking part in the simulation 
experiments. We appoint one processor as a master and the remaining Q  
by the slaves Ñ processors. We know that the processing time of a 
parallel program is obtained by the following formula: 

timenComputatioTparallel =  

,tcosioncommunicat+  

where 

computation time is the processing time. 

In order to carry out a simulation experiment, the master distributes 
the program of each developing simulation model between the number of 
slaves processors, such as each processor carries out the same copy of 
such program. Indeed, in parallelism, the program distribution is done in 
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turn between the various processors but in the proposed parallelization, 
the master distributes to each processor the program once together with 
the number of replicated runs to carry out. The reception of simulation 
results by the master is done in the same manner. This sort of 
distribution reduces the communication cost. 

We know that the load balancing is one of the most significant 
concepts in the process of parallelism. Given a simulation experiment of 
N simulation runs, the load balancing can be introduced if N is greater 
than .Q  We can pass around the load balancing, if the considered 
developing simulation model is regular that generates a number of runs 
multiple of a slave processor number. Consequently, instead of carrying 
out N replicated runs as in the case of a sequential program, each slave 
processor carries out just QN  runs. At the end of the simulation, each 
processor computes and sends its simulation results to the master that 
computes, in its turn, the final results for each parameter under study. 
Consequently, these QN  runs are regarded as one simulation 
experiment and we can say that the developed simulation model is 
regular and the load balancing is then not taken into account. This sort of 
parallelization is called distribution of computation (Lin [32]). In this 
manner, we reduce the time of parallel running simulation experiments 
by reducing the computation time. 

To ensure the independence of the generated prime numbers related 
to the sampling method itself, we suppose independent prime numbers 
generators on each processor. We first generate an unspecified integer 
number, then, we multiply it by 2 and we add 1 in order to make the 
generated number, an odd number, finally, we test if the odd number is a 
prime number by successive division on odd numbers, starting from three 
with a step of two. If it is a prime number we use it, otherwise, we go 
back to generate another unspecified integer number. In this manner, we 
reduce the time allocated to the generation of prime numbers by 75%, we 
then reduce the time of sequential running simulation experiments and 
by the way, we reduce again the parallel time by reducing the 
computation time. 

In the proposed parallelization, the number of messages is reduced 
from two N to two ,Q  then the influence of the communication cost is 
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highly controlled and therefore, it is regarded as a wasted time compared 
to a computation time. Then, 

.timencomputatioTparallel =  

Furthermore, it is well known that the parallel time of running 
experiments is inversely proportional (a linear function) to the number of 
available processors. Then, for a given number of runs, whatever the 
number of processors is, the parallel simulation results are similar to 
those obtained sequentially, but the parallel time of running simulation 
experiments is different and for a given sequential time, it decreases 
when Q  increases according to the following formula 

.
Q

sequential
parallel

T
T =  

10. Conclusions and Remarks 

The use of random sampling, the study of the variability and variance 
reduction techniques are described above to reduce the sampling errors 
in a simulation study along with some sampling methods that can be also 
regarded as variance reduction techniques. These sampling methods 
include ranked set sampling, systematic sampling, stratified sampling, 
Latin hypercube sampling, L ranked set sampling, Importance sampling, 
quasi Monte Carlo methods, descriptive sampling and refined descriptive 
sampling. A comparison between all these sampling methods was given 
generating the best sampling. The principal interest of the proposed MC 
parallelism using the best sampling RDS procedure is its running speed 
while preserving the assets of the sampling method, its efficiency and 
safety. Since this method works by replication, then it was naturally 
parallelizable. Given the scalability advantage of the SPMD model, the 
proposed parallelization is more appropriate with a big number of 
replicated runs and it is related to both, the algorithm of RDS procedure 
and the resolution algorithm of a complex problem that can be seen in a 
future work. 
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